
Convolutional Neural Networks and Support Vector Machines
for Image Classification

Chloe Mills, Shania Wan-Bok-Nale, Khoi Nguyen
McGill University

COMP 551 Mini Project 41

1 Abstract2

In this project, we were tasked to reproduce a scientific paper. We chose Abien Fred Agarap’s paper [1] in which3

the main topics are Convolutional Neural Networks with Support Vector Machines in order to classify images in4

Fashion-MNIST and MNIST datasets. We compared the performance of this model with a CNN softmax model in5

order to see if an output SVM layer increases or decreases the test accuracy when classifying images in the datasets.6

We experimented with different hyper-parameters as well as parameters to see which model performed the best. We7

found that the CNN model with softmax output layer results in test accuracy of 99.32% and 91.88% for MNIST and8

Fashion-MNIST datasets respectively. On the other hand, the CNN model with a SVM output layer results in test9

accuracy of 99.17% and 91.75% for MNIST and Fashion-MNIST datasets respectively.10

2 Introduction11

We were tasked to reproduce a scientific work of our choice. Reproducibility is a critical aspect of scientific research. It12

provides the author’s work with credibility and allows the aim of the research to be expanded. As a new and emerging13

field, Machine Learning does not have clear guidelines compared to the general sciences. Hence, the community14

has been encouraging the reproducibility checklist. Here we attempt to reproduce the results of the following paper:15

"An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image16

Classification"[1] written by Abien Fred Agarap. The paper experiments with MNIST and Fashion-MNIST datasets17

using two models, namely Convolutional Neural Network with Support Vector Machines and Convolutional Neural18

Network with Softmax.19

3 Scope of reproducibility20

Abien Fred Agarap’s paper[1], claims that using a Support Vector Machine (SVM) with Convolutional Neural Networks21

(CNN), does not improve the results of Image classification for the MNIST dataset nor for the Fashion-MNIST dataset22

compared to using Softmax activation function with CNN. In fact [1] claims that using Softmax activation function23

instead of SVM performs slightly better. Although, they point out that the model that uses SVM may achieve better24

results if preprocessing techniques were implemented.25

The author also claims that using L2-SVM loss function rather than L1-SVM loss function produces better results on26

average since it is differentiable [1]. In our experiments we test out this claim.27

4 Methodology28

We used Abien Fred Agarap’s code [2] with minor adjustments to account for older TensorFlow libraries used and29

adjustments to the SVM function. We used SVM optimizer as shown in equation (2). Abien Fred Agarap uses Euclidean30

norm squared which is defined as ∥w∥22 = (
√∑

i=1 w
2
i )

2 =
∑

i=1 w
2
i in place of wTw in equation (2).31

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



4.1 Support Vector Machines32

Support Vector Machines are used for binary classification but can be modified to support multi-class classification. We33

tested the following equations in order to determine the best one for the SVM layer in our CNN model. SVMs learning34

uses one of the following optimization equations.35

min
w

1

N
wTw + C

N∑
n=1

max(0, 1− yn(w
Txn + b)) (1)

min
w

1

N
wTw + C

N∑
n=1

max(0, 1− yn(w
Txn + b))2 (2)

SVMs learn the weight parameter w where C is a constant, yn is the corresponding label and the predict function is36

wTxn + b [1]. L1-SVM and L2-SVM are equations 1 & 2 respectively where L1-SVM minimizes hinge loss and37

L2-SVM minimizes the squared hinge loss.38

4.2 Convolutional Neural Networks with Support Vector Machines39

Convolutional Neural Networks is an artificial neural network that is most suited for computer vision. A popular use for40

CNNs is image classification. CNNs were inspired by Multi Layer Perceptrons but take a different approach when41

it comes to regularization. They may be built using multiple hidden layers which capture the spatial dependencies42

between the pixels of an image. A CNN model contains many layers with lower connectivity; in most cases they43

are used with a softmax layer as the final layer. The report "Deep learning using linear support vector machines" [3]44

challenges this norm by introducing Support Vector Machines to CNNs. Thus, we reproduced both a CNN with Support45

Vector Machine and a CNN with Softmax and compared.46

4.3 Datasets47

The MNIST dataset is one that is widely used by the Machine Learning community as the baseline dataset used in48

image processing and classification. It contains 60,000 training images and 10,000 testing images of handwritten49

digits. It has 10 classes and the dataset is evenly distributed among the classes. On the other-hand, Fashion-MNIST is50

a dataset developed by Zalando which consists of fashion and clothing items within 10 classes: T-shirt/top, Trouser,51

Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot. It was developed as an successor to the MNIST52

handwriting dataset to further challenge classification models. The dataset itself contains 70,000 instances: 60,000 of53

them for training and 10,000 of them for testing. 1 instance of the dataset consists of a 28x28 grayscale image and it’s54

classification target. When importing the dataset we normalized the values such that they are in the range of 0-1. We55

split the training dataset into 50,000 for training and 10,000 for validation. Figure 1 outlines the perfectly equal class56

distribution which ensures the model will not be biased towards a class.57

Figure 1: Equal class distribution in Fashion MNIST dataset

4.4 Hyper-parameters58

We optimized the CNN-SVM model by testing different values of the penalty parameter C. The cost (penalty)59

parameter is a hyper-parameter of the CNN-SVM model that decides how much the linear seperator should be able to60

“bend” for classification. For a small cost, a decision boundary with a large margin is chosen at the expense of more61

misclassification. For a higher cost, we aim to classify more points correctly. We decided to use the Fashion-MNIST62

2



dataset as it is more challenging in order to find the best penalty parameter. Figure 4 in the appendix highlights our63

training accuracies over different values of C and Figure 5 in the appendix highlights the training loss. We then ran our64

model on the test set and table 1 highlights our results. We also experimented with different batch sizes further down.65

C penalty Hyper-Parameters value Test Accuracy(%)

1 91.65
2 91.75
5 92.01

10 91.79

Table 1: Test accuracy of CNN-SVM over different Hyper-parameters on Fashion-MNIST

We observe that C = 5 gives us the best test accuracy of 92.01%.66

4.5 Experimental setup and code67

We used Abien Fred Agarap’s code [2] and modified the parameters (e.g. activation functions) and hyper-parameters68

(e.g. batch_size, penalty) of the functions and classes according to our experiments. However, for ablation studies, it69

involved further modifications to the code itself which we detail below.70

The code provided by the author was written using the version 1 of tensorflow. In order to run the provided code, we71

imported version 1 of tensorflow, disabled the version 2 of tensorflow, added the import module input_data.py and72

imported Fashion-MNIST dataset from outside sources.73

The layers of the CNN model are outlined in Appendix and an adaptation from [1].74

In our experiments, we performed ablation studies to understand the impact of various components of the model75

regarding the final test accuracy. We individually removed dropout, one convolutional layer, both convolutional76

layers, activation functions, pooling layers, and the fully-connected layer and tested it against both the MNIST and77

FashionMNIST datasets.78

Dropout: For dropout, we simply commented out the code involved. We plugged the result of the fully-connected layer79

directly into the readout layer, skipping the dropout layer. This is then sent into a Softmax layer or SVM layer, in order80

to obtain the results.81

1 Convolutional layer: The CNN consists of 2 convolutional layers, which we decided to remove the second layer.82

We commented out the code pertaining to the second layer. We fed the first layer after ReLU and pooling into the83

fully-connected layer, skipping the second layer and its activation function and pooling. However, the shape of the84

first layer’s matrix differs from the result of the shape of the second layer’s matrix, which the fully-connected layer is85

expecting. Hence, we also modified the shape of the fully-connected layer’s matrix in order to allow for proper matrix86

multiplication. We modified the shape from (7 ∗ 7 ∗ 64, 1024) to (14 ∗ 14 ∗ 32, 1024).87

2 Convolutional Layers: Next, we removed both convolutional layers. We passed the input directly into the ReLU88

and pooling layers, skipping the first convolutional layer, and then fed the result into the second ReLU and pooling89

layers. This is then passed into the fully-connected layer, which we modified the shape from (7 ∗ 7 ∗ 64, 1024) to90

(7 ∗ 7 ∗ 1, 1024). Since the result from the second pooling layer is now different, we also had to modify the reshape91

parameters from (−1, 7 ∗ 7 ∗ 64) to (−1, 7 ∗ 7 ∗ 1).92

Activation Functions: Each of the 2 convolutional layers and the fully-connected layer has a ReLU activation function93

attached to it. It was a simple process to remove the activation functions and plugging the convolutional layers straight94

into the pooling layers.95

Pooling Layer: There is a pooling layer that follows each of the convolutional layers. We sent the result after each96

activation function of the convolutional layers to the next layer, skipping the pooling layer. We did not have to modify97

the shape of the second convolutional layer. However, we did have to modify the shape of the fully-connected layer,98

from (7 ∗ 7 ∗ 64, 1024) to (28 ∗ 28 ∗ 64, 1024), which the result of the second convolutional layer is passed into. We99

noticed that each of the 2 pooling layers shrunk the size of the matrix by a factor of 4, therefore without them, our100

second convolutional layer’s matrix’s size increased by a factor of 16. Therefore, we also had to change the parameters101

3



of the reshape/flatten function accordingly from (−1, 7 ∗ 7 ∗ 64) to (−1, 28 ∗ 28 ∗ 64). Because of the noticeable102

increase in size of the matrices, the training process took up a significant amount of memory and time.103

Fully-connected Layer: There exists a fully-connected layer in between the second convolutional layer and the dropout104

layer. To remove this, we simply sent the result of the second convolutional layer after ReLU and pooling straight to105

dropout. However, the result of dropout is multiplied with the readout layer, therefore we have to modify the shape of106

the readout layer’s matrix. We changed it from (1024, 10) to (3136, 10) to match the flattened pooling of the second107

convolutional layer of (batch_size, 3136)108

4.6 Computational requirements109

We ran the models on our local computers. The hardware used were 2 MacBooks with Intel’s 8th gen Core i5 with 8GB110

of RAM, a laptop with AMD Ryzen 9 5900HS with 8 cores and with 16GB of RAM, and a desktop with AMD Ryzen 5111

2600 with 6 cores and 16GB of RAM. No GPUs were used in our experiments.112

Most of our experiments were done with batch size of 128; in which our CNN-SVM model had an average runtime113

of 860 seconds, and our CNN-Softmax model had had an average runtime of 840 seconds. We also experimented114

with different batch sizes of 512, 256, 64, 32, 16, 8 and their runtimes are 2809, 1641, 514, 363, 226, 168 seconds115

accordingly.116

For both models, the experiments on average, used up 1.2GB of memory. However, the pooling layer ablation117

experiment used up 2.2GB of memory due to the expanded matrix size. Therefore, in our case, we had enough memory118

to run multiple instances of experiments simultaneously to maximize our CPU usage. A faster runtime would require119

the usage of GPUs.120

5 Results121

Our goal was to reproduce the results in [1] using CNN-softmax and CNN-SVM models. We performed ablation122

studies and modified the models in order to understand their robustness and to evaluate their performance. We also123

experimented with L1-SVM and L2-SVM loss to see if the author’s claims such that L2-SVM which minimizes the124

squared-hinge loss, provides higher accuracy than using L1-SVM which minimizes the standard hinge loss.125

5.1 Results reproducing the paper126

We ran both the CNN-Softmax and CNN-SVM over both MNIST and Fashion-MNIST datasets. Figures 6,7,8,9 in the127

appendix highlight our corresponding training loss and training accuracy results.128

We observe that the four figures have similar trends as the plots in the paper [1]. On the MNIST dataset, we see a sharp129

increase in accuracy to above 90% in only 100 epochs for both models. Similarly, the loss over both models in the130

MNIST dataset have high correlation with each other. However, we observe CNN-softmax to have a general trend of131

higher training accuracy and training loss on fashion-MNIST dataset. Table 2 features our test accuracy results over the132

two models and two datasets.133

We observe CNN-Softmax to have higher test accuracies than CNN-SVM in both datasets. Thus, we arrive at the same134

conclusion as [1] which states that CNN with Support Vector Machines does not necessarily perform better than CNN135

with Softmax. In fact, CNN-SVM performs slightly worse. We conclude that the paper [1] is reproducible.

MNIST Fashion-MNIST

CNN-SVM 99.17 91.75
CNN-softmax 99.32 91.88

Table 2: Test accuracy of CNN-SVM & CNN-softmax over MNIST and Fashion-MNIST

136

4



Figure 2: L1-SVM and L2-SVM training
accuracy on Fashion-MNIST dataset

Figure 3: L1-SVM Loss and L2-SVM Loss on
Fashion-MNIST dataset

5.2 Results improving SVM137

When experimenting with L1-SVM compared to L2-SVM we found that L1-SVM actually performed slightly better138

than L2-SVM with test accuracy of 92.32% and 91.75% respectively on the Fashion-MNIST dataset. Since this139

difference is so small, we continued to use L2-SVM in our experiments since we wanted to reproduce the same results140

as [1]. Figures 2 & 3 display our results. They seem to both follow similar trends as the accuracy increases but L1-SVM141

seems to have sharper rises and falls in accuracy compared to L2-SVM.142

For the MNIST dataset, using L2-SVM results in 99.17% and L1-SVM results in test accuracy of 99.21%. Figure 10 &143

11 in Appendix display our results.144

5.3 Ablation Studies145

After removing each layer, we ran both CNN-SVM and CNN-Softmax and recorded the test accuracies on the MNIST146

and FashionMNIST datasets. After removing the layers, the accuracy decreased as expected, but by very little. On147

average, the difference compared to the original model was about 1%. Even after removing both convolutional layers,148

the difference was around 10%. What is astonishing, however, is that after individually removing the dropout layer and149

fully-connected layer, the accuracies increased instead. The accuracies from the dropout layer ablation using CNN-SVM150

surpassed the original model, while slightly falling behind using CNN-Softmax. Meanwhile, the fully-connected layer151

ablation achieved higher accuracies on average.152

We speculate that the dropout layer ablation increases the accuracy because our model is not prone to overfitting,153

therefore dropping nodes would simply decrease the amount of data that is used to train the model. As for the154

fully-connected layer ablation, we speculate that it holds less importance to the model and might be causing our155

model to slightly overfit. According to our results, we find that the components with greatest importance would be the156

convolutional layers, followed by the pooling layers and finally the ReLU activation layers. This experiment displays157

how powerful and robust our CNN model is; even with important layers removed, it still produced high accuracy.158

Layer(s) Ablated MNIST SVM(%) MNIST Softmax(%) FashionMNIST SVM(%) FashionMNIST Softmax(%)

No Layers Ablated 99.17 99.32 91.75 91.88
Dropout Layer 99.22 99.07 92.26 91.58

1 Convolutional Layer 99.06 98.76 92.22 91.73
2 Convolutional Layers 90.64 91.23 80.30 80.37

ReLU Layers 98.67 98.80 90.88 90.81
Pooling Layers 98.53 98.79 90.56 90.66

Fully-connected Layer 99.35 99.26 91.87 91.94

Table 3: Test accuracies of CNN-SVM and CNN-Softmax on MNIST and FashionMNIST datasets with layers ablated

5.4 Batch sizes and activation functions159

We experimented with different batch sizes of 8, 16, 32, 64, 128, 256, 512. We found that the smaller the batch size, the160

faster the training process, but also the lower the test accuracy. This was inline with our expectations, since we are161

5



training with more samples per epoch. However, we found that slight increase in accuracy for batch sizes larger than162

128 is no longer worth the long runtime.163

Size: 8(%) Size: 16(%) Size: 32(%) Size: 64(%) Size: 128(%) Size: 256(%) Size: 512(%)

88.24 88.7 89.78 91.30 91.75 91.97 91.91

Table 4: Test accuracies of different batch sizes using CNN-SVM on FashionMNIST with best hyper-parameters

We also experimented with different activation functions on CNN-SVM such as ReLu, tanh, sigmoid, and Leaky-164

ReLu. The test accuracy results on the Fashion-MNIST dataset are 91.75%, 90.12%, 92.07% and 90.75% respectively.165

Surprisingly, sigmoid activation function achieved a higher accuracy than ReLu, whereas the other activation functions166

yielded a slightly lower accuracy.167

6 Discussion168

We were able to reproduce experimental results that support the claims of the paper. We experimented with L1-SVM in169

place of L2-SVM as well as using wTw as seen in equation (2) rather than Euclidean norm squared as seen in [1]. We170

did numerous additional experiments outside of the original paper, including ablation studies, effects of different batch171

sizes and activation functions and more. However, we did not have enough time and computational power to use k-fold172

with our experiments or run multiple runs of the same experiment, therefore we were not able to account for potential173

variance between runs.174

6.1 What was easy175

The code that we used to experiment on was very clear. The author’s github explained well how to run the code. He176

commented his code thoroughly which made it easier for us to understand the logic when looking at his Support Vector177

Machines and Softmax implementations.178

6.2 What was difficult179

It was difficult to import the datasets. As the author created his code during the time that tensorflow was still in version180

1, we encountered numerous Module Errors. The method to import the datasets were also different from the one that we181

usually used and instead we needed additional resources to add the import module and Fashion-MNIST dataset as GZ182

files. The author implemented SVM using Euclidean norm squared in place of wTw in equation (2). So understanding183

the reasoning behind this decision was difficult. Since the squared Euclidean Norm is simply squaring the weights and184

taking the sum; understanding why this produces accuracy on par with equation (2), involves a vast understanding of185

mathematics and algorithms.186

Although the code was commented well, it was still sometimes difficult to modify the code during our ablation studies.187

Removing a layer usually changes the size of the matrices that are being multiplied together. This meant we had to188

determine the correct dimensions of the different layers’ matrices and adjust it accordingly.189

6.3 Statement of Contributions190

All three members of the group contributed equally to this project. Nguyen worked on the ablation, Mills worked on the191

SVM implementation and Wan-Bok-Nale worked on the reproduction of the paper.192

References193

[1] Abien Fred Agarap. 2017.An Architecture Combining Convolutional Neural Network (CNN) and Support Vector194

Machine (SVM) for Image Classification, agarap2017architecture, arXiv preprint arXiv:1712.03541, (2017).195

[2] abien_fred_agarap_2017_1098369, Abien Fred Agarap, AFAgarap/cnn-svm v0.1.0-alpha, 2017, 10.5281/zen-196

odo.1098369, https://doi.org/10.5281/zenodo.1098369,197

[3] Yichuan Tang. 2013. Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239 (2013)198

6



7 Appendix199

CNN architecture:200

1. Input: 32 x 32 x 1201

2. Convolutional Layer 1: 5 x 5, 32 filters202

3. ReLu203

4. Pooling: 2 x 2, 1 stride204

5. Convolutional Layer 2: 5 x 5, 64 filters205

6. ReLU206

7. Pooling: 2 x 2, 1 stride207

8. Fully-connected Layer: 1024 hidden units208

9. Dropout: p = 0.5209

10. Softmax Readout Layer: 10 output classes210

Figure 4: CNN-SVM Training Accuracy over
Fashion-MNIST with different

Hyper-parameters

Figure 5: CNN-SVM Training Loss over
Fashion-MNIST with different

Hyper-parameters

Figure 6: Training Accuracy on MNIST dataset Figure 7: Training Loss on MNIST dataset

Figure 8: Training Accuracy on
fashion-MNIST dataset

Figure 9: Training Loss on fashion-MNIST
dataset

Figure 10: L1-SVM and L2-SVM training
accuracy on MNIST dataset

Figure 11: L1-SVM Loss and L2-SVM Loss on
MNIST dataset

7


	Abstract
	Introduction
	Scope of reproducibility
	Methodology
	Support Vector Machines
	Convolutional Neural Networks with Support Vector Machines
	Datasets
	Hyper-parameters
	Experimental setup and code
	Computational requirements

	Results
	Results reproducing the paper
	Results improving SVM
	Ablation Studies
	Batch sizes and activation functions

	Discussion
	What was easy
	What was difficult
	Statement of Contributions

	Appendix

