
Classification of Textual Data using Naive Bayes and Softmax Regression
COMP 551 Mini Project 2

Chloe Mills, Shania Wan-Bok-Nale, Khoi Nguyen

March 2022

Abstract
In this project, we were tasked to implement Naı̈ve Bayes

classification and Softmax Regression models to classify
the following datasets: 20newsgroups and Sentiment140.
The 20newsgroups dataset consists of over 18000 news-
group posts over 20 topics and Sentiment140 dataset con-
sists of a collection of tweets with a positive, negative senti-
ment. Our goal was to find the model with the highest accu-
racy. We trained our Gaussian Naı̈ve Bayes model, Multino-
mial Naı̈ve Bayes model and SciKit learn’s Logistic Regres-
sion model using different hyper-parameter settings for each
of the classifiers, which we found to influence the results.
We implemented k-fold cross validation on every model
to ensure performance consistency. We found that our best
performing model was the Logistic Regression model on
20newsgroup, which reported an accuracy score of 72.28%
on the final test set with tuned Hyper-parameters(C=100,
Solver = liblinear). On Sentiment140 dataset, our Multino-
mial Naive Bayes model using tfidf was our best performing
model with a score of 76.88% on the final test set. Over-
all, Softmax Regression was significantly faster to train over
both datasets.

Introduction
Our task was to create a Naı̈ve Bayes Machine Learn-

ing model to run on the 20newsgroup dataset and Senti-
ment140 dataset to classify text into category and sentiment
respectively. With 192 million daily active Twitter users and
more than 100 million daily tweets, creating a model that
could classify text into binary sentiments would be highly
desirable. Likewise, there are millions of news group posts
each pertaining to different categories. We wanted to create
a model that could classify different posts into topics. The
ability to classify raw data into categories would allow re-
searchers to organize documents or tweets into specific cat-
egories. We trained the following models: Gaussian Naı̈ve
Bayes, Multinomial Naı̈ve Bayes and Logistic Regression
using a training set of 10,000 randomly shuffled tweets from
Sentiment140 and the complete dataset of 20newsgroups
with 18,846 newsgroup posts. We decided on the more ap-
propriate model for each dataset based on the test accu-
racy. The classifiers used were Logistic Regression from
SciKit-Learn library, and our own implementation of Multi-
nomial Naive Bayes and Gaussian Naives Bayes. The differ-
ent text to feature vectorizers used were TF-IDF vectorizer
and count vectorizer. Each model was trained with differ-
ent hyper-parameter settings over K-fold cross-validation to
achieve the highest accuracy. After careful experimentation,

we found Softmax Regression to be our best classifier model
with a test accuracy of 72.28% on the test set of 20news-
groups dataset and Multinomial Naive Bayes model with a
test accuracy of 76.88% on the Sentiment140 test set.

Dataset
The 20newsgroups dataset consists of 20 Classes:

alt-atheism, comp-graphics, comp-os-ms-windows-misc,
comp-sys-ibm-pc-hardware, comp-windows, comp-sys-
mac-hardware, misc-forsale, rec-autos, rec-motorcycles,
rec-sport-baseball, rec-sport-hockey, sci-crypt, sci-
electronics, sci-med, sci-space, soc-religion-christian,
talk-politics-guns, talk-politics-mideast, talk-politics-misc
and talk-religion-misc. The dataset is split across 20 dif-
ferent newsgroups. Each class represents a different topic
that the newsgroup documents belong to. We collected
the training data and test data from SciKit-learn’s library
datasets.fetch 20newsgroups(). We set the parameter sub-
set=train and subset=test respectively and removed headers,
footers and quotes. The training set consists of 11314 rows
and 7532 rows in the test set.

Figure 1: 20newsgroups Training Set distribution over 20
classes

Figure 1 & 2 highlights the similarities between the class
distributions for the training set and the test set in the
20newsgroup dataset.

We imported the Sentiment140 dataset into pandas
DataFrame and used the text column as the training set
and the sentiment column as the target. The Sentiment140
dataset consists 2 classes: Positive and Negative in the train-
ing set. The Sentiment140 test set consists of 3 classes: Pos-
itive, Neutral and Negative so we removed the neutral class
in order to be consistent with training our model. Since the
Sentiment140 dataset has over a million tweets, we shuffled

1



Figure 2: 20newsgroups Test Set distribution over 20
classes

the data with a fixed seed and took the first 10000 shuffled
tweets.

In each of the datasets, we extracted the features from
the text by counting the occurrence of each word using
CountVectorizer.fit transform() which resulted in a feature
vector. We transformed said feature vector into tfidf val-
ues by using TfidfTransformer.fit transform(). In our results
we examine whether or not tfidf produces higher accuracy
compared to counting occurences. For the target of each re-
spective dataset, we used CountVectorizer() and TfidfTrans-
former() similarly to the training set. Since the data is al-
ready fitted to the training set, we called transform() instead
of fit transform().

Figure 3: Sentiment140 Test Set distribution over 2 classes

Figure 4: Sentiment140 Training Set distribution over 2
classes

Figure 3 & 4 highlight the similarities between the class
distribution for training and test set in the Sentiment140
dataset.

The difference of class imbalance in the training and
test sets should be at a minimum in order to ensure the model
is trained on similar instances as the test data. Shown in
Figure 1,2,3 and 4, we found both datasets to be quite bal-
anced with each class representing a relatively equal weight
in each respective dataset. Although a few of the 20news-
group dataset’s classes were on the lower end of the count,
we found this to still be balanced.

We further analyzed the datasets by finding the most im-
portant word for each of the 20 classes in 20Newsgroups
and top 10 most important words of the 2 classes in Sen-
timent140 using tf-idf. Table 5 in the Appendix highlights
our findings on 20Newsgroups Dataset. Table 6 in the Ap-
pendix highlights our findings on Sentiment140 Dataset. We
find our recent analysis of important words per class to be
quite interesting as you can recognize the link between the
categories and sentiments to the words at first glance.

Results
K-Fold Cross Validation: We created the function

cross validation split to split the data and targets into k=5
folds. Each of the folds is used as validation while the
remaining 4 folds are used as the training set. We then
implemented the function kfoldCV to perform the 5-fold
cross-validation on each of our models, training sets, data
and targets. Note that we kept the CountVectorizer() and
TfidfTransformer() separate to be able to compare the per-
formance of the K-fold implementation of Naı̈ve Bayes.
Gaussian Naı̈ve Bayes: We converted the 20 newsgroup
dataset into sparse matrices containing the feature vectors
by using CountVectorizer() and TfidfTransformer(). We then
converted the feature vectors into numpy ndarrays such that
our model could be able to fit and predict the data. This con-
version has very high space complexity so we do not save
the sparse matrix to ndarray conversion after we are done
using it. For example, the fit/predict functions converts the
sparse matrix to ndarray, but after the functions are done us-
ing it, the space is freed up again. This still caused the pre-
dict function to crash when calling it on the entire test set of
the 20 newsgroup dataset because this dataset contains over
18000 newsgroup documents. As a result, we split the val-
idation set into subsets by using for-loops and calling each
subset sequentially. We saved the results of each subset and
calculated the average to obtain the models accuracy. The
accuracy of Gaussian Naı̈ve Bayes was relatively low with
around 5% on the 20newsgroup dataset since the model pre-
dicted that every test case belongs to class 0. The sentiment
dataset had an accuracy of around 49% because our model
predicted that every test case has negative sentiment (i.e. be-
longs to class 0). This was a result of fitting the models for
each of the datasets with standard deviation equal to 0 for
certain features in a class. Hence when calculating the log
likelihood used by the posterior in our prediction, the fea-
tures that have standard deviation = 0 create divide by zero
and logarithmic warnings which in turn renders some of the
results as NaN. To bypass this error, we added a constant c
= 1e-9 when calculating a features standard deviation in our
fit function. This increased the accuracy of GaussianNaive-
Bayes to 55.05% for the 20newsgroup dataset and to 57.38%



for the sentiment dataset.
To achieve higher accuracy, we then implemented

MultinomialNaiveBayes classifier. Multinomial naı̈ve bayes
performs better than Gaussian naı̈ve bayes because a multi-
nomial distribution can better fit data in the cases that the
probability of the features is a multinomial distribution.
Counting occurrences works very well under this model. To
fit this model, we calculated the priors which is represented
by the number of documents in each class, divided by the
total number of documents. To perform Laplace smoothing
we calculated pi=((Number of occurrences of word in class
c)+1)/(total number of occurrences of all words in class c +
number of features in c). In the predict function, we calcu-
lated the probability that the document belongs to each class
and chose the class with the highest probability. We then
multiplied the prior of the class by the conditional prob-
ability of each word in the document being in said class.
Since we are multiplying many small values together, the
float gradually becomes smaller until it can no longer repre-
sent the number (i.e. underflow). To prevent this we worked
in the log domain.

Our first implementation of Multinomial Naı̈ve Bayes
took around 2 hours to run for the 20newsgroup dataset since
we chose to use for-loops instead of sparse matrices and
ndarray functions. In order to optimize the model, we only
worked with nonzero elements in the training data which re-
duced the running time to around one minute. The 20news-
group dataset had an accuracy of around 52% and the senti-
ment dataset had an accuracy of around 75%.

Experiments: To obtain the best hyper-parameter for
Naı̈ve Bayes we tested our Multinomial Naı̈ve Bayes and
Gaussian Naı̈ve Bayes implementation respectively over
different text vectorization functions and tested different
hyper-parameters. These tests consist of count occurrences
with/without stop-words, and tfidf with/without stop-words
for each of the datasets.

Figure 5: 20Newsgroup Naive Bayes 5-fold classifier
comparison

The Sentiment140 dataset performed very well on
the 5-fold cross-validation with the MultinomialNaiveBayes
model compared to the GaussianNaiveBayes model. When
testing different hyper-parameters, the lower bound was
around 70% validation accuracy for Multinomial and around

Figure 6: Sentiment Naive Bayes 5-fold classifier
comparison

55% for Gaussian as seen in Figure 6.
In comparison, the 20Newsgroup dataset had larger

variability when testing different hyper-parameters in the
5-fold cross-validation MultinomialNaiveBayes model. Al-
though the highest validation accuracy is a result of the
MultinomialNaiveBayes using count with stop-words, the
GaussianNaiveBayes performs better on all other hyper-
parameters. Figure 5 outlines these results.

Furthermore, we compared our implementation of
Multinomial Naı̈ve Bayes to SciKit-learn’s with the same
hyper-parameters. Our implementation performed slightly
better on the 20newsgroups dataset using count occurrences
with stop-words than sciKit-learn’s implementation using
the same hyper-parameters. On the other hand, our imple-
mentation performed slightly worse on the sentiment dataset
using TFIDF as hyper-parameter compared to SciKit-learns.

Finally, we tested the effect that n-gram have on the test
accuracy. The default n-gram is only unigrams (1,1). Since
testing unigrams and bigrams increases the space complex-
ity significantly (around 10 times as big), we tested the effect
of n-grams on a smaller subset of the training set. This ex-
plains the lower test accuracy.

Figure 7: 20Newsgroups Unigrams comparison with best
hyper-parameters

Figure 7 & 8 conveys that the Gaussian Naive Bayes
model increases in test accuracy when we go from default



Figure 8: Sentiment Unigrams comparison with best
hyper-parameters

(1,1) unigrams to (1,2) both unigrams and bigrams. We as-
sumed that this is because it is equivalent to adding extra
training data to the model, therefore leading to an increase in
test accuracy. On the other hand, Multinomial Naive Bayes
model decreases in test accuracy when we use (1,2) both un-
igrams and bigrams. We speculate that this is because we
have not refined or filtered out important and frequently oc-
curing bigrams in our testing, and were simply using all pos-
sible bigrams. This might have had an adverse effect and
affected the importance of the unigrams hence causing a de-
crease in test accuracy.

In table 5 and 6, notice that many of the important features
are single words, such as “good”, “thanks”, “love”, “sad”.
They rarely appear as a bigram. For example, “very good”
does not appear as much as “good”. Therefore removing
unigrams will significantly decrease the accuracy. We have
not tested this as extensively on the 20newsgroups dataset
compared to the Sentiment140 dataset, however our current
results shows a decrease of 42.55% to 29.84% test accu-
racy on the Gaussian Naive Bayes model with best hyper-
parameters, and a decrease of 39.79% to 10.08% test accu-
racy on the Multinomial Naive Bayes model with best hyper-
parameters.

Table 1 highlights our results with the score being the
test accuracy. We see that our Multinomial Naive Bayes
Model with count and stopwords had the highest test accu-
racy for the 20 newsgroups dataset while our Multinomial
Naive Bayes with tfidf has the highest score for the Senti-
ment140 dataset.

Dataset Best Model/Hyper-Parameters score(%)

20newsgroups MultinomialNB count & stopwords 64.76
Sentiment140 MultinomialNB tfidf 76.88

Table 1: Test accuracy of Naive Bayes over the best Hyper-
parameters on both Dataset

Next, we implemented a Softmax regression model us-
ing SciKit-learn’s LogisticRegression library. When we ran
the model with default parameters, we obtained test accu-
racy of 67.37% on 20newsgroups dataset and 74.09% on

Sentiment140 dataset.
We ran Softmax Regression over pairs of different

hyper-parameter values on each respective dataset. We chose
to run the experiment using the Hyper-parameters C and
Solver from the full list of Hyper-parameters given. Table
2 and Table 3 highlight our results with the score being the
test accuracy. We see that running Softmax Regression with
the hyper-parameters Solver = liblinear and C value = 100,
we get the highest test accuracy of 72.28% on 20newsgroup
dataset. This is an improvement from the default parameters
test accuracy. On the other hand, softmax regression on Sen-
timent140 with hyper-parameters Solver = newton-cg and C
= 1 produced the highest score of 74.00%, which is similar
to the default hyper-parameters.

Hyper-parameter C Hyper-parameter Solver score (%)

100 newton-cg 71.64
100 lbfgs 71.59
100 liblinear 72.28
10 newton-cg 71.49
10 lbfgs 71.50
10 liblinear 72.01
1 newton-cg 69.26
1 lbfgs 69.26
1 liblinear 69.16

0.1 newton-cg 56.53
0.1 lbfgs 56.53
0.1 liblinear 56.51

0.01 newton-cg 42.93
0.01 lbfgs 42.93
0.01 liblinear 44.88

Table 2: Test accuracy of SciKit-learn’s Softmax Regression
over pairs of different hyper-parameters on 20newsgroups
dataset

Hyper-parameter C Hyper-parameter Solver score (%)

100 newton-cg 72.02
100 lbfgs 72.01
100 liblinear 72.02
10 newton-cg 73.39
10 lbfgs 73.38
10 liblinear 73.38
1 newton-cg 74.00
1 lbfgs 73.99
1 liblinear 73.98

0.1 newton-cg 71.40
0.1 lbfgs 71.40
0.1 liblinear 71.44

0.01 newton-cg 66.57
0.01 lbfgs 66.57
0.01 liblinear 67.56

Table 3: Test accuracy of SciKit-learn’s Softmax Regres-
sion over pairs of different Hyper-parameter values on Sen-
timent140 Dataset

Table 4 displays the model with the hyper-parameters
that result in the highest test accuracy for each of the
datasets. We can see that the best model for 20newsgroups



Model 20newsgroups Sentiment140 Mean
MultinomialNB count & stopwords: 64.76% tfidf: 76.88% 70.82

SoftmaxR C=100, Solver=liblinear: 72.28% C=1, Solver=newton-cg: 74.00% 73.14

Best Score(%) 72.28 76.88 73.14

Table 4: Comparison between Multinomial Naive Bayes and
Softmax Regression over the best hyper-parameters.

is Scikit learn’s softmax regression with hyper-parameters
C=100 and Solver=liblinear. The test accuracy is 72.28%.
The best model for Sentiment140 is our implementation of
multinomial naive bayes with hyper-parameter tfidf. The test
accuracy is 76.88% for Sentiment140 dataset. Overall, the
average of the highest test accuracies is 70.82% for multino-
mial naive bayes and 73.14% for softmax regression. Hence
the winner overall is softmax regression.

We ran further experiments with our models by com-
paring the test accuracy of the two models as a function of
the size of training dataset. We selected 20%, 40%, 60% and
80% of the available training data and trained our models on
this subset over the two datasets and scored them over their
test accuracy. Figure 9 highlights our results. We observe a
recurrent trend with the test accuracy increasing as we in-
crease low percentages of the training set to then plateau as
we increase high percentages of the training set. At some
point we even see that using only 80% of the training set has
a slightly better accuracy than using 100% of the training
set. We suspect this might arise due to a slight over fit from
using 100% of the training set.

Figure 9: 20newsgroups Test Set distribution over 20
classes

Discussion and Conclusion
In this project, we classified text into 20 categories and

binary sentiments using Naive Bayes and Softmax Regres-
sion machine Learning Models over 20newsgroups and Sen-
timent140 datasets. We examine some points worth dis-
cussing.

We observed that our Multinomial Naives Bayes im-
plementation had highly varying test scores when imple-
menting the model with different hyper-parameter functions
like tfidf, count, count with stop-words, tfidf, tfidf with stop-
words on 20newsgroups dataset. That being said, we found
both model to perform quite well. Softmax Regression with
hyper-parameters C=100 & Solver=liblinear performed bet-
ter on the 20newsgroup dataset with a score of 72.28% while

our Multinomial Naive Bayes model using tfidf performed
better on Sentiment140 with a score of 76.88% on the final
test set. As for future investigation, classifying sentiments
using a Bernouilli Naive Bayes Machine Learning Model
could be a solution as Bernouilli NB works with multiple
features but each one is assumed to be a binary-valued vari-
able. We could have also investigated Linear Support Vector
Machine model which is regarded as one of the best text
classification model.

Statement of Contributions
All three members of the group contributed equally to this
project, we even had a fun time together and it was a
great learning curve for all three of us. Nguyen worked on
the Multinomial Naive Bayes models while Mills worked
on Gaussian naive bayes model. Mills and Wan-Bok-
Nale worked on the implementation of Softmax Regression
model, analysis and format of the datasets, experiments and
results. We all contributed to the write up of the report of our
respective work.

Appendix

Class Most important word tf-idf score

alt.atheism god 16.9
comp.graphics graphics 22.3

comp.os.ms-windows.misc windows 46.0
comp.sys.ibm.pc.hardware drive 24.2

comp.sys.mac.hardware mac 25.1
comp.windows.x window 27.8

misc.forsale sale 24.4
rec.autos car 37.7

rec.motorcycles bike 31.0
rec.sport.baseball year 18.1
rec.sport.hockey game 24.9

sci.crypt key 36.2
sci.electronics use 10.6

sci.med msg 14.7
sci.space space 33.7

soc.religion.christian god 45.9
talk.politics.guns gun 25.8

talk.politics.mideast israel 30.5
talk.politics.misc people 14.5
talk.religion.misc god 15.1

Table 5: tf-idf score over most important word in each
20Newsgroups dataset class



Class 10 Most important word tf-idf scores

just 76.6
work 76.1
day 58.1
like 56.7

0 - Negative today 54.6
don 52.8

going 51.1
sad 49.6

really 49.0
miss 49.0
good 84.9
just 77.0
love 66.3

thanks 62.5
4 - Positive day 61.7

http 56.1
lol 54.4

going 53.6
quot 53.2
time 50.1

Table 6: tf-idf score over most 10 important word in each
Sentiment140 dataset class


